skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Zhewei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent years have witnessed marked progress in the efficient synthesis of various enantioenriched 1,2,3,4-tetrahydroquinoxalines. However, enantio- and diastereoselective access to trans-2,3-disubstituted 1,2,3,4-tetrahydroquinoxalines remains much less explored. Herein we report that a frustrated Lewis pair-based catalyst generated via in situ hydroboration of 2-vinylnaphthalene with HB(C6F5)2 allows for the one-pot tandem cyclization/hydrosilylation of 1,2-diaminobenzenes and 1,2-diketones with commercially available PhSiH3 to exclusively afford trans-2,3-disubstituted 1,2,3,4-tetrahydroquinoxalines in high yields with excellent diastereoselectivities (>20 : 1 dr). Furthermore, this reaction can be rendered asymmetric by using an enantioenriched borane-based catalyst derived from HB(C6F5)2 and a binaphthyl-based chiral diene to give rise to enantioenriched trans-2,3-disubstituted 1,2,3,4-tetrahydroquinoxalines in high yields with almost complete diastereo- and enantiocontrol (>20 : 1 dr, up to >99 % ee). A wide substrate scope, good tolerance of diverse functionality and up to 20-gram scale production are demonstrated. The enantio- and diastereocontrol are achieved by the judicious choice of borane catalyst and hydrosilane. The catalytic pathway and the origin of the excellent stereoselectivity are elucidated by mechanistic experiments and DFT calculations. 
    more » « less